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Abstract—Inspired by natural evolutionary processes, Evolu-
tionary Computation (EC) has established itself as a cornerstone
of Artificial Intelligence. Recently, with the surge in data-intensive
applications and large-scale complex systems, the demand for
scalable EC solutions has grown significantly. However, most
existing EC infrastructures fall short of catering to the heightened
demands of large-scale problem solving. While the advent of
some pioneering GPU-accelerated EC libraries is a step forward,
they also grapple with some limitations, particularly in terms
of flexibility and architectural robustness. In response, we in-
troduce EvoX: a computing framework tailored for automated,
distributed, and heterogeneous execution of EC algorithms. At
the core of EvoX lies a unique programming model to streamline
the development of parallelizable EC algorithms, complemented
by a computation model specifically optimized for distributed
GPU acceleration. Building upon this foundation, we have crafted
an extensive library comprising a wide spectrum of 50+ EC
algorithms for both single- and multi-objective optimization.
Furthermore, the library offers comprehensive support for a
diverse set of benchmark problems, ranging from dozens of
numerical test functions to hundreds of reinforcement learning
tasks. Through extensive experiments across a range of problem
scenarios and hardware configurations, EvoX demonstrates ro-
bust system and model performances. EvoX is open-source and
accessible at: https://github.com/EMI-Group/EvoX.

Index Terms—Scalable Evolutionary Computation, GPU Ac-
celeration, Distributed Computing, Neuroevolution, Evolutionary
Reinforcement Learning.

I. INTRODUCTION

NSPIRED by the process of natural evolution, Evolutionary

Computation (EC) has established its significance as a
distinctive discipline within the expansive realm of Artificial
Intelligence (AI) [1]. EC’s pivotal role is underscored by its
inherent attributes: adaptability, resilience, and aptitude, which
are pivotal for complex problem solving [2[]-[4]]. Furthermore,
EC plays a pivotal role in the quest for Artificial General In-
telligence, especially within the context of neuroevolution [J5].

In the contemporary era, marked by large volumes of data
and complex systems across diverse domains, the emphasis on
scalability in EC has gained paramount importance [6], [7]. As
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problem complexity and dimensionality increase, especially
in fields like deep learning, there is an increasing demand
for EC infrastructures to accommodate larger population sizes
and higher-dimensional problems [8], [9]. Looking ahead,
scalable EC will not only facilitate tackling larger problems
but also pave the way towards emulating the complexity and
adaptability inherent in biological systems [10]. However,
most existing EC infrastructures, including algorithm designs
and computing frameworks, were merely tailored for smaller
scales. Thus, addressing the challenge of scalability is a critical
research frontier in the ongoing development of EC.

Inherently, EC algorithms are well-suited to parallel compu-
tation due to their usage of a population of candidate solutions,
each capable of independent evaluation. Consequently, they
stand to benefit substantially from the parallel computation
capabilities of hardware accelerators. Traditional CPU-based
parallelization remains the prevailing approach, exemplified
by DEAP [11]], PyGAD [12], Pymoo [13]], and Pagmo [14].
Until very recently, some pioneering advancements have led
to the emergence of GPU-accelerated EC libraries such as
EvoJAX [15]], evosax [16], and EvoTorch [[17]. Particularly,
EvoJAX and evosax are based on JAX [/18]], while EvoTorch
is built upon PyTorch [19] and Ray [20].

Nonetheless, the pace of integrating hardware accelerators
into EC infrastructures has been substantially slower compared
to the strides made in the deep learning sector. A primary
reason for this discrepancy is the lack of a universally endorsed
and scalable computing framework. Existing EC libraries,
notably the recent GPU-accelerated ones, offer a plethora of
useful tools and features. However, they are not without limita-
tions. EvoJAX and evosax, in spite of harnessing GPU acceler-
ation features, predominantly cater to evolution strategies with
a focus on single-objective optimization, thus limiting their
broader applicability. EvoTorch stands out with its adeptness in
auto-parallelizing EC algorithms across multiple GPUs. How-
ever, its reliance on PyTorch, which is primarily tailored for
deep learning rather than scientific computing, could impede
its computational efficiency. Additionally, the parallelism of
EvoTorch-based solutions is tightly coupled with the opera-
tors supported by PyTorch, potentially limiting the flexibility.
Most importantly, while EvoJAX, evosax, and EvoTorch are
commendable as algorithm libraries, their architectural designs
at the framework level are very limited. For example, they
lack unified programming and computational models to enable
simple implementation of general EC algorithms for seamless
execution in distributed environments.

To address these limitations, we introduce EvoX, a frame-
work that facilitates automated, distributed, and heterogeneous
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execution of general EC algorithms. EvoX implements a
straightforward functional programming model, enabling users
to declare the logical flow of an EC algorithm via a unified
interface. Moreover, EvoX adopts a hierarchical state man-
agement strategy that automatically distributes the tasks to
arbitrary heterogeneous resources using a distributed execution
engine. In summary, the main contributions are:

o We have designed and implemented EvoX, a scalable and
efficient framework that enables the execution of general
EC algorithms across distributed heterogeneous systems.

« We have proposed a straightforward functional program-
ming model within EvoX to streamline the development
process of general EC algorithms for parallelization. This
model allows users to easily declare the logical flow of
an EC algorithm, which reduces the complexity typically
associated with the development process.

e We have unified the main data stream and functional
components into a flexible workflow. This unification
is achieved through a hierarchical state management
module, which supports high-performance executions of
general EC algorithms.

o Leveraging the EvoX framework, we have crafted a li-
brary that encompasses a wide spectrum of 50+ EC algo-
rithms for both single- and multi-objective optimization.
Furthermore, the library has featured intuitive interfaces
to diverse benchmark environments, comprehensively
supporting hundreds of instances ranging from numerical
optimization functions to reinforcement learning tasks.

The remainder of this paper is organized as follows. Sec-
tion |II] presents some related work. Section [III] illustrates the
motivation and requirements. Section [IV|details the program-
ming and computation models. Section [V| and Section
elaborate on the architecture and implementation of EvoX
respectively. Section conducts the experiments to assess
the performance EvoX, in comparison with EvoTorch. Finally,
Section [VIII] concludes the paper and discusses future work.

II. RELATED WORK

A. EC libraries in Python

DEAP [11]] stands as a comprehensive framework for EC
algorithms in Python. With a rich history and a plethora of
features, it caters to a broad spectrum of EC algorithms,
encompassing both single- and multi-objective variants. Its
collection of built-in benchmark problems facilitates the com-
prehensive evaluations of EC algorithms.

PyGAD [12] is a specialized platform for devising genetic
algorithms in Python. It empowers users with a variety of
crossover, mutation, and parent selection operators. Notably,
it is particularly tailored for machine learning tasks, offering
specialized tools and features for neural network training,
cementing its role in integrating EC with machine learning
pursuits.

Pymoo [|13]] focuses primarily on multi-objective optimiza-
tion problems, providing a robust platform for EC in Python.
Its extensive support for diverse benchmark problems and
state-of-the-art multi-objective EC algorithms, combined with

visualization tools, highlights its commitment to the EC do-
main.

Pygmo [14], distinguished by its emphasis on massively
parallel optimization, adopts the generalized island model
for coarse-grained parallelization. It offers a vast array of
algorithms and benchmark problems, facilitating the efficient
deployment of parallelized EC algorithms. Its batch fitness
evaluation feature further enhances its utility.

EvoJAX [15] pushes the boundaries of scalable, hardware-
accelerated neuroevolution. Leveraging the capabilities of the
JAX framework, it seamlessly integrates evolution strategies
with neural networks, ensuring efficient GPU parallelism.
Building upon JAX, it provides a NumPy-like environment
with just-in-time (JIT) compilation.

evosax [ 16], a recent addition, positions itself as a dedicated
library for GPU-accelerated ES. Taking cues from EvoJAX
and deeply integrated with the JAX infrastructure, it presents
a curated suite of ES algorithms, each of which is optimized
for GPU performance.

EvoTorch [17] is another emerging library placing an
emphasis on addressing scalability challenges within EC by
harnessing the power of GPU acceleration. By seamlessly inte-
grating with PyTorch, it not only gains the inherent advantages
of this popular deep learning framework but also naturally taps
into the vast resources of the Python community.

B. JAX

JAX [18] has rapidly ascended the ranks to become a
leading computational infrastructure. While it offers a NumPy-
style API, JAX has been optimized for GPU-accelerated nu-
merical operations. JAX’s unique selling point is its adaptabil-
ity to contemporary computational challenges. Its just-in-time
(JIT) compilation transforms user-defined Python functions
into high-performance machine code adaptable to diverse
hardware platforms.

One of JAX’s notable features is its ability to fuse operators,
thereby amalgamating multiple smaller tensor operations into
singular and efficient tasks, thus reducing memory overhead.
Its integrated autograd system enables automatic gradient
computations, an essential feature for gradient-based optimiza-
tion. Adhering to functional programming paradigms, JAX
ensures computations are pure and side-effect-free, resulting
in predictable and debug-friendly code. Such principles align
well with EC algorithms, which are stateless by nature and
suitable for a functional setting.

III. MOTIVATION AND REQUIREMENTS

As shown in Fig. [1] the typical process of an EC algorithm
involves evolving a population of candidate solutions to a
specific problem. In each iteration of the main loop, the
current population first undergoes a reproduction phase to
generate new candidate solutions. Next, the evaluation phase
assesses the effectiveness, a.k.a. firness, of each candidate
solution in solving the problem at hand. Following evaluation,
a selection process is carried out, favoring candidate solutions
with superior fitness for inclusion in the subsequent generation,
in line with the principle of survival of the fittest. This process



Selection Evaluation
Initial Evolutionary Final
Population Process Population
Reproduction

Fig. 1: The typical process of an EC algorithm. Starting with
an initial population, the EC algorithm engages in problem-
solving through an iterative evolutionary process. Specifically,
the main loop of this process evolves the population via three
primary components: reproduction, evaluation, and selection.
Ultimately, the final population is output as the solution set to
the problem at hand.

repeats until either a satisfactory solution or set of solutions is
found, or a predetermined number of iterations are completed.
From the perspective of a computing framework, the pop-
ulation can be viewed as the primary data flow, while the
reproduction, evaluation, and selection are three functional
components. Therefore, a computing framework designed for
scalable EC must efficiently support these workloads. We
provide a brief description of these workloads below.

o Population: This object, consisting of candidate solutions
in various data structures, goes through each functional
component of the entire evolutionary process. In some
emerging applications of EC such as deep neuroevo-
lution [S]], the population may require computationally
expensive decoding for complex representations.

e Reproduction: This process, such as the crossover/muta-
tion operators in a genetic algorithm, often consists of
a set of heuristic strategies for generating new candidate
solutions. Reproduction can be parallelized in most EC
algorithms that adopt dimension-wise operations when
generating each new candidate solution.

o Evaluation: This process can be intrinsically parallelized
in a distributed setting as the evaluation of each candidate
solution is independent. In some emerging applications of
EC such as evolutionary reinforcement learning [21]], the
computing task may require heterogeneous hardware (i.e.,
CPUs & GPUs) for hybrid complex simulations and deep
learning tasks.

o Selection: This process is often realized via a set of sort-
ing/ranking strategies, which can be compute-intensive
with respect to population size. Parallelized selection is
particularly beneficial in EC paradigms involving multi-
ple populations.

Unlike deep learning, which benefits from a streamlined
end-to-end workflow, the various components of an EC work-
flow, including data flow processing and functional elements,
play distinct yet interconnected roles. This uniqueness poses
significant challenges when designing a general computing
framework to support EC algorithms. Moreover, as the applica-
tions of EC continue to expand, a widening gap has emerged
between EC and other major branches of Al. Bridging this
gap necessitates the development of a distributed computing
framework that can efficiently handle EC workloads, ensuring

scalability and compatibility with heterogeneous computing
environments. Specifically, such a framework should meet the
following requirements.

o Flexibility and Extensibility: The framework should sup-
port easy implementation of a broad spectrum of EC
algorithms and black-box optimization problems. To this
end, it should provide flexibility in the representation of
candidate solutions (e.g., strings, trees, neural networks),
the combination of various reproduction and selection
mechanisms, as well as diverse methods for evaluation.
Users should be able to leverage the framework to inte-
grate existing modules seamlessly, thereby constructing
workflows that align with their specific research goals
and problem contexts.

e Parallelizable Programming: The framework should
adopt a programming model geared towards paralleliza-
tion. While this model offers advantages such as im-
proved code clarity, testability, and reusability, its primary
strength lies in its innate ability to support parallel
execution. Consequently, even EC algorithms developed
without direct parallel considerations should intuitively
harness this capability, thus allowing for efficient execu-
tion across multiple computing units concurrently.

o Heterogeneous Execution: The framework should enable
task executions across various types of computing re-
sources, including CPUs, GPUs, or even other specialized
hardware. It should also support distributed computing
across multiple nodes, which involves intelligent data
sharding, task scheduling, and resource management
based on the requirements of tasks and available hard-
ware. It should transparently manage data transfer and
synchronization between different nodes.

In response to these requirements, we design and imple-
ment EvoX. In the following section, we will elaborate on
the programming and computation models underpinning this
framework.

IV. PROGRAMMING AND COMPUTATION MODELS
A. Programming Model

To meet the requirement of Parallelizable Programming
(outlined in Section [[II), we adopt the functional program-
ming paradigm as the core of our programming model. This
design is rooted in the paradigm’s intrinsic benefits, including
streamlined code, augmented reusability and testability, and a
natural affinity for parallel and distributed computing. With
this model, our aim is to provide an intuitive interface that
facilitates the straightforward implementation of a wide spec-
trum of EC algorithms and their corresponding workflows.

An illustrative example of using the proposed programming
model to implement a vanilla EC algorithm is presented
in Listing This implementation comprises four sections:
_ _init_ , setup, ask and tell. Within the __init_
section, basic operators essential to the EC algorithm, en-
compassing processes like reproduction and selection, are
defined. Given their invariant nature throughout the evolution-
ary trajectory, these operators are archived under the Python
attribute self. The setup section is devoted to initializing




| from evox import Algorithm, State
2

3class EC(Algorithm) :

4 def _ _init__ (self, reproduction, selection, ...):
5 # initialize operators

6 super () .__init__ ()

7 self.reproduce = reproduction
8 self.select = selection

9

10

1 def setup(self, key):

12 # initialize data

13 init_population =

14 init_fitness = ...

15 .

16 # initialize state

17 return State(

18 pop = init_population,

19 fit = init_fitness,

21 key=key
22 )

24 def ask(self, state):

25 # generate offspring

26 offspring = self.reproduce(state.pop, ...)
27 # update state

28 state = state.update(

29 # merge offspring into the population
30 pop = merge (pop, offspring),

31 .

32 )

33 return offspring, state

34

35 def tell(self, state, fitness):

36 # select new population

37 new_pop, new_fit = self.select(

38 state.pop, merge(state.fit, fitness))
39 # update state

40 state = state.update(

41 pop = new_pop,

42 fit = new_fit,

43

44 )

45 return state

Listing 1: An exemplar implementation of a vanilla EC
algorithm within the EvoX framework. This implementa-
tion comprises four sections: __init__, setup, ask, and
tell. The __init___ section is dedicated to initializing
foundational operators, including reproduction and selection
mechanisms. The setup segment focuses on data initial-
ization, encompassing elements like the population data and
fitness data. Within the ask section, the offspring are produced
utilizing the reproduction operator, while the tell section
facilitates population updates through the selection operator.

essential data elements such as the population data and fit-
ness data, as well as a key for random number generation.
As these elements possess a mutable characteristic and are
subject to modifications with each iteration, they are aptly
demarcated as part of the state. Subsequently, the ask
section is tailored for the generation of offspring, realized
through the designated reproduction operator (e.g., crossover
and mutation). By contrast, the tell section orchestrates
the assimilation of offspring into the prevailing population,
culminating in an updated population based on the predefined
selection operator. Table [I] provides a concise overview of

TABLE I: Summary of core modules and functions in EvoX’s

programming model.

Module Function Description
Algorithm ask To generate offspring population.
tell To select new population.
Problem evaluate To evaluate the fitness of a given population.
Monitor record_pop  To record the population data.
record_fit  To record the fitness data.
Workflow init To initialize the workflow.
step To execute one iteration of the workflow.

the primary modules and functions within the programming
model, which are detailed as follows.

Algorithm is tailored for encapsulating EC algorithms. At
its core is the ask—and-tell interface, which conceptual-
izes the EC algorithm as an agent in perpetual interaction with
a problem at hand, involving ask and tell functions:

e ask: it processes the state to yield new candidate
solutions, updating the algorithmic state by merging
these solutions with the existing population.

e tell: after ingesting the state and the fitness metrics
of the new offspring, it selects candidate solutions for
the next iteration, resulting in a refreshed algorithmic
state.

Problem is tailored for modeling the problems to be solved.
Central to this module is the evaluate function dedicated
to determining the fitness values of candidate solutions within
a population. Notably, the Problem module is constructed as
a stateful procedure, such that it is capable of facilitating the
management of intricate external environments. For instance,
neuroevolution tasks reliant on external datasets can use the
Problem module to manage the current batch via its state.

Monitor serves as an optional module for monitoring the
data flow when running an EC algorithm. Utilizing callback
functions, the Monitor module receives user-specified data
by employing callback function, e.g., record_pop and
record_fit for population data and fitness data respec-
tively. Within the Monitor module, users can further process
the data by statistical means or visualization tools.

Workflow plays a pivotal role in integrating various com-
ponents to shape a cohesive and executable EC workflow.
It begins by amalgamating diverse modules of Algorithm,
Problem, and Monitor specified by users. Following this,
it acts as the primary module, sequentially initiating every
component via the init function. This orchestration produces
a global state, enveloping individual states as defined by each
module’s setup method. Listing [2| showcases the usage of
the workflow within EvoX. After selecting an algorithm, a
problem, and a monitor, users combine these instances within a
workflow object. Post-initialization via init, which activates
every module under the workflow object recursively, users
can fine-tune the workflow for advanced computational tasks,
thus facilitating the efficient execution of the workflow across
multiple nodes. The workflow’s execution is then triggered
using the step function. Each call will take a single step in



| from evox.workflow import StdWorkflow
2

3 # workflow creation

s4workflow = StdWorkflow (

5 algorithm,

6 problem,

7 monitor

8)

9

10 # workflow initialization

1nkey = # A random number generator key

12state = workflow.init (key)
13

14 # workflow analyzer (optional)

15 state workflow.enable_multi_devices (state)
16 state = workflow.enable_distributed(state)
17

18

vwhile ...: # not terminated

20 # ner

workflow.step (state) #

Listing 2: Illustrative usage of a workflow in EvoX. First, a
workflow object is created. Second, all components within a
workflow are initialized, and a global state is returned. Then
the workflow can be configured with the help of a workflow
analyzer. Finally, the workflow is executed inside a loop in a
distributed environment.

the iteratior[']

B. Computation Model

EvoX employs a workflow abstraction to perform com-
putations and automatically invoke different instances (e.g.,
Algorithm and Problem modules) when they are ready to
execute. In this subsection, we detail how EvoX translates a
user-written program (Listing [2)) into an automated workflow
(Fig. ) for parallel execution internally. At the core, an EC
workflow is driven by executing an ask-evaluate-tell
loop iteratively, which seamlessly integrates the Algorithm,
Problem, and Monitor modules.

Initially, each iteration commences with the ask func-
tion in the Algorithm module to generate a population. To
harness the capabilities of hardware acceleration, this pop-
ulation is encoded in a tensor format, i.e., tightly packed
multi-dimensional arrays in memory for data-level parallelism.
For simplicity, we denote the tensorized population data as
Tpop = [X1,X2,...,X;,...] hereafter, where x; denotes each
encoded candidate solution.

Upon generating the population, the evaluate function
in the Problem module will return the fitness data, i.e., the
corresponding fitness values of the candidate solutions within
the population. Similar to T,,,, the fitness data adopts a
tensor representation to streamline subsequent processing. For
simplicity, we denote the tensorized fitness data as Ty;; =
[Y1,¥2, -, i, -..] hereafter, where y, denotes the fitness value
of each candidate solution in the population.

'Within the realm of EC algorithms, one iteration does not necessarily
correspond to a single generation. Specifically, an iteration denotes a solitary
ask-evaluate-tell loop, while some algorithms may require several
iterations to complete a single generation.

Monitor

t f

Tyt

Algorithm

———— Update state
——> Normal data flow

Fig. 2: Tllustration of the computation model adopted by EvoX.
There are three main modules: Algorithm, Problem, and
Monitor. The iteration starts with ask function which gener-
ates T, as the tensorized population. Then the population
is sent to the Problem module for fitness evaluations via
evaluate function and then generate T,,, as the tensorized
fitness. Finally, the fitness is passed back to the Algorithm
module through the tell function. Meanwhile, T, and
Ty can be optionally sent to the Monitor module for
further processing, where record_pop and record_fit
functions record T, and T, respectively. In addition to the
normal data flow, each module can update its individual state
at every function call.

Finally, the loop enters the tell function of the Algorithm
module, which proceeds to select candidate solutions for
generating new T, according to Ty;;. Given the tensorial
nature of both T, and T s;;, the Algorithm module can easily
adapt to data-level parallelism.

Outside this primary loop, each module is responsible for
two distinct data categories: immutable data and mutable data
(i.e., the state). Immutable data, often initialized during
object instantiation via Python’s __init__ method, encom-
pass static hyperparameters pertinent to each module and
might include external datasets for specific problems. These
remain unchanged throughout the computational life-cycle. In
contrast, the state is initialized after the entire workflow
has been assembled, starting with the topmost module and
proceeding recursively through the dependency tree. During
computation, as the global state is activated, state management
ensures that each module receives its specific state data as the
primary argument for its function. This segmented strategy
enables each module to concentrate on updating its own
state, while collaboratively participating in the comprehensive
update of a unified global state.

One of the distinguishing attributes of EvoX is its founda-
tional alignment with the tenets of functional programming.
This approach accentuates a distinct separation between data
and functions, thus ensuring that functions remain free from
side effects. From this perspective, executing an EC algorithm
can be perceived as orchestrating state updates via a coherent
data flow, which can be formally articulated as follows.



Given 0 as the hyperparameters, an EC algorithm 4y can
be denoted as (0, g*(-), g*"(-)), where ¢*k(-) and g¢"!!(")
correspond to the ask and tell functions, respectively.
When Ay is applied to a specific problem Pp with f!(.)
as its evaluate function, D comprises the parameters or
datasets related to the problem. At each step, the data flow is
articulated as:

Tpops S = 95(5), (1)
TfitaS: feVl(S7TpOp)7 (2)
S = g5" (S, Tyir), 3)

where S denotes the state that encapsulates the mutable
data associated with Ay and Pp. From this formulation, it is
evidenced that the only variable undergoing updates at each
iterative step is the state .S. Consequently, the operation of the
entire EC algorithm can be envisioned as a sequence of state
transitions, which is realized through the repeated execution
of the step function within the Workflow module.

Beyond the primary computational processes of EC, the
Monitor module also plays a pivotal role. Users are usually
interested in the data generated during the running process of
an EC algorithm, such as the best solution found so far, and
the distribution of the population, among various other aspects.
The Monitor module tailored this purpose in a pluggable and
asynchronous manner. When the user plugs a monitor into
the workflow, both T, and T;; are asynchronously sent to
the monitor. This allows the main EC computational process
to progress uninterrupted, without waiting for the monitor to
complete the data processing. Given that the monitor might
involve subsequent slow disk I/O or plotting functions, this
asynchronous design can significantly enhance the overall
computational efficiency. Furthermore, since the monitor does
not interfere with the primary computational process, the
module even allows users to employ multiple monitors in
parallel when needed.

To realize our envisioned workflow abstraction which co-
ordinates these different modules, EvoX employs a stateful
computation model for all primary modules. This model adopts
the signature (state, ...) —-> (result, state),
where each module operates based on its current state and
other inputs, subsequently producing a result and an updated
state. However, as we arrange these modules hierarchically,
complexities arise: although it is naturally expected for a mod-
ule to manage only its state, it also inherits the responsibility
for the states of its nested sub-modules. To meet the require-
ment of such layered state management, EvoX adopts a hier-
archical state management mechanism, ensuring the smooth
crafting of stateful computations across intricate hierarchies.
Central to this system is the state variable, which acts
as a universal conduit across computational modules. Rather
than being a static entity, this variable dynamically adjusts to
encapsulate the relevant state during each function’s execution.
This adaptive design ensures automated state transitions and
efficient management across the comprehensive hierarchical
framework. In the following section, we will delve into the
hierarchical state management mechanism, as well as other
main components that underpin the architecture of EvoX.
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Fig. 3: Architecture of EvoX. The workflow analyzer sets
the stage for task execution. Each node is equipped with
a local workflow executor, responsible for orchestrating the
ask—-evaluate—tell loop. At the controller node, a global
workflow executor directs the local workflow executors within
this loop, employing the al1-gather collective operation to
harmonize fitness values obtained from the evaluate phase.

V. ARCHITECTURE

As illustrated by Fig. [3] the general architecture of EvoXx
comprises five main components: programming API, workflow
analyzer, global workflow running, monitor, and execution
engine. Among them, the programming API and monitor have
already been introduced in the previous section. In this section,
we will first elaborate on the hierarchical state management
mechanism, which is the core of the entire architecture. Then
we will delve into the other three main components: workflow
analyzer, workflow executor, and execution engine.

A. Hierarchical State Management

As highlighted in the preceding section, EvoX utilizes a
hierarchical state management mechanism to streamline state
transitions throughout the execution process. To elucidate this
mechanism, let us consider the hyperparameter tuning task
illustrated in Fig. ] The architecture is structured across three
module tiers. At the pinnacle is a workflow encapsulating the
entire hyperparameter optimization endeavor. This workflow
branches into two distinct sub-modules: an algorithm module
(for optimizing the parameter set) and a problem module
(for assessing the performance of a specific parameter set).
Initially, each module undergoes a recursive state initialization
and is assigned a unique identifier. When a function accesses
the state, it retrieves its own unique identifier and fetches the
corresponding state, as depicted in Fig. fla] Post-execution,
when the function returns an updated state, this state is
seamlessly integrated back into the overarching universal state
using the identifier, a process visualized in Fig.

Although state management introduces additional overhead,
it is effectively eliminated by leveraging the JAX’s JIT com-
piler. The system efficiently resolves the overhead associated
with state identification after compilation. Specifically, JAX
first traces the function, converting it into a computational
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Fig. 4: Hierarchical state management in EvoX: (a) state
initialization, (b) state update.

graph where operations are directly linked to the tensors
it applies to. Once this computational graph is compiled,
subsequent function calls take advantage of this pre-compiled
version, bypassing the need for repeated state identification
and ensuring optimal performance.

Within the proposed hierarchical state management, tradi-
tional distinctions between algorithms and problems become
nuanced: all elements present themselves as interconnected
modules within a comprehensive hierarchical architecture.
This design aligns with the requirement of Flexibility and
Extensibility as discussed in Section [T}

B. Workflow Analyzer

As depicted in Fig.[5] the workflow analyzer is instrumental
in analyzing and tailoring the execution behavior to align with
user requirements. Given EvoX’s commitment to the func-
tional programming paradigm, workflows can be modularly
decomposed.

In multi-device scenarios, despite the presence of a single
host, a multitude of diverse devices can be concurrently
harnessed. When leveraging multiple local devices, strategic

Computation Data
i Workflow

Analyze runtime Analyze data placement

| Computational Components | | Module Dependency |

Initialization

| | Static Data |

|Algorithm| | Problem | | Monitor | |

| Devicev X |

Deploy Actors l
| Execution Engine |

Universal State

Auto Sharding

| Shard 1 | | Shard n | | n Copies |

| Host @ |

Device Memory

Fig. 5: Workflow analyzer in EvoX. The analyzer examines
both computation and data components distinctly. For compu-
tation, it ascertains the optimal runtime: typically, algorithms
execute on devices, monitors operate on the host, and the
problem can run on either. For data, it strategically distributes
data across multiple devices. The universal state is sharded to
ensure distribution across all devices, while the static data is
replicated consistently to each device.

data distribution becomes paramount. Primarily, two strategies
emerge: replication — duplicating the same data across all
devices, and sharding — each device holding only a portion
of the complete dataset. By aggregating the capabilities of
multiple devices, sharding optimizes individual device mem-
ory and can handle larger datasets than a standalone device.
However, it may necessitate data transfer between devices for
certain operations, thus introducing potential communication
overheads. This underscores the need for sharding strategies
that mitigate communication costs.

From a data flow perspective, the crux of EC lies in the
repetitive update of the fitness and population tensors, T
and T,,.p,, as delineated in Section Given this, it is
imperative that any sharding strategy should consider both
tensors. For Ty, it is straightforward that the evaluation
of each candidate solution can be performed independently
and in parallel. However, for T,,,, which represents the
tensor of encoded candidate solutions, the situation is more
sophisticated. Basically, there exist two potential sharding
strategies: segmenting by individual encoded candidates or by
encoded dimensions. While the former strategy seems intu-
itive, it is less effective in the context of EC algorithms, which
may frequently require collective information from the entire
population for estimation of distribution. In contrast, sharding
by encoded dimension aligns better with the inherent behavior
of EC algorithms. During reproductive operations such as
crossover or mutation, EC algorithms typically adjust each
dimension of the individual candidate solutions in an isolated
manner. Hence, EvoX adopts dimension-centric sharding for
T,op to curtail cross-device communication overheads. It is
important to note that while the sharding strategy can be
applied universally across various algorithms, its effectiveness
can be influenced by specific algorithm designs. Particularly,
algorithms that engage extensively in cross-dimensional oper-
ations may not fully benefit the multi-device acceleration.

In distributed settings, the workflow analyzer synchronizes
both the module and its preliminary data across nodes. When



a sophisticated distributed engine like Ray is employed, the
analyzer wraps both the algorithm and problem, including their
states, into actor constructs. With the execution engine’s aid,
these actors are dispatched to each node. However, when using
a basic engine like distributed JAX, the workflow analyzer
employs the SPMD (Single Program, Multiple Data) pattern.
Here, users are tasked with initiating an identical program
on all nodes, but with slight input variations (e.g., node
IDs). This approach ensures natural synchronization during
the initialization phase, resulting in uniform module and data
distribution across nodes.

Moreover, our workflow analyzer is capable of effectively
separating JAX code from standard Python code. Upon iso-
lation, the JAX code undergoes compilation by XLA, thus
facilitating its application across a diverse array of hardware
backends such as CPUs, NVIDIA GPUs, and AMD GPUs,
among others. This adaptability offers users the flexibility
to effortlessly transition between execution backends to meet
their unique requirements.

C. Workflow Executor

In multi-device configurations, even after the state partition-
ing facilitated by the workflow analyzer, the sharding of all
intermediate tensors remains paramount. To this end, we adopt
the GSPMD method [22] as embraced by JAX, which ensures
consistent sharding propagation for every intermediate tensor.
Within the realm of distributed computing, our approach
focuses on maximizing multi-device capabilities within each
node. In contrast to specific distributed EC algorithms (e.g.,
the distributed evolution strategy [23]]), our approach embeds
itself at the workflow level. This architectural choice endows
EvoX with unparalleled adaptability, which enables support
for a myriad of algorithms and problems without mandating
foundational code alterations.

In detail, the workflow executor disperses the Algo-
rithm and Problem modules as actors across each node
while concurrently mirroring the state. On one hand, every
node employs a local workflow executor tailored for the
ask-evaluate-tell loop. On the other hand, a cen-
tralized global workflow executor oversees the entire node
network’s execution for coordinating operations across local
executors. Central to its approach is the all-gather col-
lective operation which synchronizes fitness values returned
by the evaluate function. This synchronized aggregation
paves the way for a unified update during the tell step,
thus ensuring end-to-end synchronization at the end of each
iteration.

D. Execution Engine

The execution engine refers to the component specially en-
gineered to coordinate and synchronize the execution of code
across disparate machines. Within the architecture of EvoX,
we predominantly leverage two salient execution engines: Ray
and distributed JAX. As a Python-centric framework, Ray
is underpinned by an actor-based programming paradigm.
Users can delegate actors to Ray’s scheduler, which then
automatically allocates these actors to machines in accordance

TABLE II: Selected EC algorithms in EvoX for single-
objective optimization: Evolution Strategy (ES), Particle
Swarm Optimization (PSO), and Differential Evolution (DE).

Type Algorithm Name
ES CMA-ES [24], PGPE [25], OpenES [23|,
CR-FM-NES [26], xNES [27]], ...
PSO FIPS [28], CSO [_29], CPSO [30],
CLPSO [31]l, SL-PSO [32], ...
DE CoDE [33], JaDE [34], SaDE [35],

SHADE [36|], IMODE [37], ...

TABLE III: Selected EC algorithms in EvoX for multi-
objective optimization: dominance-based, decomposition-
based, and indicator-based approaches.

Algorithm Name

NSGA-II [38]], NSGA-III [39], SPEA2 [40],
BiGE [41], KnEA [42], ...

MOEA/D [43]l, RVEA [44], t-DEA [45]],
MOEAD-M2M [46], EAG-MOEAD [47], ...

IBEA [48], HypE [49], SRA [50],
MaOEA-IGD [51], AR-MOEA [52], ...

Type

Dominance-based

Decomposition-based

Indicator-based

with stipulated computational requirements. In contrast, the
distributed functionality within JAX deviates from that of
Ray. Rather than incorporating scheduling capabilities, this
feature of JAX prioritizes synchronization tools and facilitates
collective operations across a multitude of nodes.

VI. IMPLEMENTATION

EvoX is developed in Python and leverages JAX for
optimized execution on hardware accelerators. The design
integrates distributed computing features using either Ray or
distributed JAX. For the implementation using Ray, modules
and their respective states are treated as actors, and assigned
to Ray’s scheduler. For the implementation using distributed

TABLE IV: Benchmark problems provided by EvoX.

Name Description

A test suite for benchmarking single-objective

CEC22 (53] numerical optimization.

A test suite for benchmarking bi-objective

ZDT 4] numerical optimization.

A test suite for benchmarking multi-objective

DTLZ [55] numerical optimization with scalable dimensions.

A test suite for benchmarking multi-objective
numerical optimization with many objectives,
a.k.a., many-objective optimization.

MaF [56]

A test suite for benchmarking multi-objective
numerical optimization with large-scale decision
variables.

LSMOP [57]

A JAX-based physics engine, fully differentiable
and optimized for reinforcement learning, robotics,
and other simulation-intensive applications.

Brax [58]

A comprehensive toolkit for developing and
comparing reinforcement learning algorithms
through a collection of standardized environments.

Gym [59]




JAX, users are asked to initiate a consistent program across
nodes, but with distinctions in input arguments. Based on this
foundation, we have further crafted a comprehensive library.
For user convenience, EvoX is readily available on PyPI, facil-
itating an effortless installation process via the pip command.
Moreover, we provide a comprehensive documentatioxﬂ for
detailed user guidance.

In detail, for single-objective optimization, EvoX presents
EC algorithms spanning categories such as Evolution Strategy
(ES), Particle Swarm Optimization (PSO), and Differential
Evolution (DE), as listed in Table for multi-objective
optimization, the library covers all three representative types of
EC algorithms: dominance-based, decomposition-based, and
indicator-based ones, as listed in Table Beyond algo-
rithms, EvoX also provides seamless support for a diverse set
of benchmark problems, which fulfills various research and
application requirements. This collection includes benchmark
test suites for numerical optimization and environments for
reinforcement learning tasks, as listed in Table All algo-
rithms and problems are implemented in a tensorized manner
to maximize the parallelization benefits of GPU acceleration.

VII. EXPERIMENTAL STUDY

This section offers a comprehensive assessment of the
performance of EvoX through a series of experiments. Ex-
cept for the multi-node acceleration experiment presented in
Section all the other experiments were executed on
a dedicated machine equipped with two Intel Xeon Gold
6226R CPU @ 2.90GHz processors (each with 16 cores and
32 threadsﬂ and eight NVIDIA A100 GPUs, with only one
GPU engaged for each experiment. In contrast, the experiment
in Section utilized a 4-node physical GPU cluster
interconnected using 10Gb Ethernet over optical fiber, where
each node integrated an Intel Xeon Gold 6240 CPU @
2.60GHz and four NVIDIA RTX 2080ti GPUs. The pseudo-
random number generation remained consistent, employing the
rbg generator from JAX.

A. System Performance

The primary objective of this subsection is to evaluate the
efficacy of GPU acceleration in handling both single-objective
and multi-objective numerical optimization tasks. Following
this, we scrutinize the framework’s proficiency in multi-node
acceleration.

1) Single-objective Numerical Optimization: In this ex-
periment, we evaluate three representative EC algorithms
(PSO [60], DE [61], and CMA-ES [24]) on the Sphere
function, which is a basic benchmark function for single-
objective numerical optimization. During the assessment of
scaling with respect to the problem dimension, we retained a
consistent population size of 100. On the other hand, in the
evaluation of population size scalability, we maintained the
problem dimension at a constant value of 100.

>The documentation of EvoX is available at: https://evox.readthedocs.io/,

3For experiments running on CPUs, parallelization was optimized across
all 2 x 32 threads.
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Fig. 6: Scalability performance of PSO, DE, and CMA-ES on
the Sphere function for single-objective numerical optimiza-
tion, in terms of problem dimension and population size. Both
axes employ a logarithmic scale. A fixed population size of
100 is used when scaling the problem dimension, and vice
versa.

Fig. [6] reveals that GPU acceleration considerably enhances
the performance of the evaluated algorithms, especially as
the problem’s dimension or population size grows. Initial
tests with small dimensions or populations might favor the
CPU, but GPU performance rapidly overtakes as the scale
increases, frequently achieving a tenfold or greater speedup.
A notable observation is the plateauing of performance in
the early stages of the scaling tests with GPU acceleration.
This plateau suggests that lighter computations cannot fully
harness the GPU’s capabilities, thus resulting in near-constant
computational costs.

However, it is paramount to understand that the advan-
tages of GPU acceleration are algorithm-dependent. Algo-
rithms inherently unsuited for parallelism or those restricted
by memory constraints might not benefit as significantly.
For instance, CMA-ES internally uses a covariance matrix,
demanding memory proportional to the square of the prob-
lem dimension. This requirement limited its ability to scale
beyond a dimension of 16,384, even though the GPU ac-
celerated performance by orders of magnitude. The vanilla
DE also presents some limitations, particularly when scaling
the population size beyond 16,384. Such restrictions emerge
from specific operators within DE not optimized for GPUs
or larger populations. Specifically, the mutation operator in
vanilla DE, while suitable for smaller populations, becomes
computationally intensive with larger populations, especially
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Fig. 7: Scalability performance of NSGA-II, MOEA/D, and
IBEA on the DTLZ1 function for multi-objective numerical
optimization, in terms of problem dimension and population
size. Both axes employ a logarithmic scale. A fixed population
size of 100 is used when scaling the problem dimension, and
vice versa.

when ensuring distinct individual sampling.

2) Multi-objective Numerical Optimization: This subsec-
tion evaluates the advantages of GPU acceleration for multi-
objective EC algorithms, segmented into two primary inves-
tigative parts. First, we investigated the scalability of three
representative multi-objective EC algorithms: NSGA-II [38]],
MOEA/D [43], and IBEA [48]. When scaling the problem
dimension, we consistently employed a population size of
100, and vice versa. Subsequently, we assessed the scalability
of another three representative multi-objective EC algorithms:
NSGA-III [39], RVEA [44], and HypE [49] in relation to
the number of optimization objectives. For this part, the
problem dimension was fixed at 100,000. All experiments were
conducted using DTLZ1 [55]], one of the most commonly used
test functions for multi-objective numerical optimization.

As shown in Fig. [/} NSGA-II notably benefits from GPU
acceleration during both problem dimension and population
size scaling. While MOEA/D’s scalability is not as pronounced
as NSGA-II, it still substantially benefits from GPU accelera-
tion. IBEA also demonstrates significant speed enhancements,
particularly when the problem dimension is high.

Notably, the effectiveness of GPU acceleration is intrin-
sically related to the algorithmic mechanisms. For example,
the performance improvement in NSGA-II is attributed to the
GPU-accelerated computation of dominance relations, which
is computationally intensive but amenable to parallelization. In
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Fig. 8: Scalability performance of NSGA-III, RVEA, and
HypE on the DTLZI1 function for multi-objective numerical
optimization, in terms of the number of optimization objec-
tives. Both axes employ a logarithmic scale. The problem
dimension is fixed at 100,000.
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TABLE V: Architecture of the CNN used in the multi-node
acceleration experiment.

Input Shape Layer Filter Shape Strides

32x32x%x3 Conv 3 x3x3x32 1
30 x 30 x 32 Max Pooling 2x2 2
15 x 15 x 32 Conv 3Xx3x32x32 1
13 x 13 x 32 Max Pooling 2x2 2
6 X 6 x 32 Conv 3 X3 x32x32 1

512 Fully Connected 512 x 64 —

64 Fully Connected 64 x 10 —

contrast, the scalability of MOEA/D is somehow limited by
its inherent design. Specifically, the sequential update strategy
within the reproduction operator requires the completion of
one individual’s update before proceeding to the next. This
sequential dependency hampers the potential for parallel pro-
cessing, which is crucial for GPU acceleration.

Fig. [§] indicates that all tested algorithms significantly
benefit from GPU acceleration as the number of optimiza-
tion objectives increases. Although these algorithms were
not inherently designed for a large number of optimization
objectives, they maintain consistent performance up to 100
objectives. However, as the count escalates, NSGA-III and
HypE’s performance diminishes while RVEA remains con-
sistently robust, although the scenarios involving over 100
optimization objectives are rare in practice.

3) Multi-node Acceleration: This subsection evaluates the
efficacy of multi-node acceleration and contrasts the perfor-
mance between the two execution engines leveraging JAX
and Ray respectively. For this purpose, we conducted an
experiment on neuroevolution for image classification across
multiple GPU devices.

Specifically, we evolved a convolutional neural network
(CNN) on the CIFAR-10 dataset [62], scaling from 4 to
16 GPUs, and measured the time per iteration. The CNN
architecture, as detailed in Table [V] employs ReLU [63] as the
activation function between layers. For the EC algorithm, we
utilized PGPE [|64] with a population size of 192. To quantify
the acceleration’s effectiveness, we present two metrics: time
per iteration and relative performance, the latter being the
inverse of the former.

Fig. 0] presents the performance of multi-node acceleration.
Notably, for a lower count of GPU nodes, the runtime sub-
stantially reduces with increased GPU nodes, achieving an
almost linear acceleration rate. However, as more GPUs are
integrated, the rate of performance gain tapers off, leading
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Fig. 9: Results of multi-node acceleration using 4 to 16 GPUs.
Data is presented in two forms: runtime (left) and its inverse
(right).

to an overarching sub-linear acceleration trend. This behavior
aligns with expectations. While our acceleration framework
primarily accelerates the computational parts of the workflow,
the distributed execution engine introduces some overhead. As
GPU count escalates, the cost of fitness evaluations drops, thus
making other workflow costs more prominent.

Notably, the scalability of our distributed workflow is
closely tied to the problem’s nature. More computationally
demanding problems offer better scalability since the dis-
tributed framework effectively offloads the fitness evaluations,
thus yielding substantial gains. By contrast, for computa-
tionally cheap problems (e.g., numerical optimization), the
performance enhancements can be less significant. This is
because the algorithm’s demands and the distributed frame-
work’s overhead often outweigh the computational cost of
fitness evaluations.

Besides, the two execution engines leveraging JAX and
Ray possess unique performance attributes respectively. JAX
incurs relatively lesser overhead and offers superior scalability,
significantly outperforming Ray on a 4-GPU setup. This
performance disparity stems from JAX’s efficient hardware
utilization, especially when recognizing that the 4 GPUs reside
on the same physical node. By contrast, Ray offers a more
intuitive interface, supplemented by features like scheduling
and fault tolerance, which are capabilities absent in distributed
JAX. Ray’s scheduling allows users to initiate a task once,
distributing it automatically across nodes, while JAX mandates
manual task initiation on each node.

B. Model Performance

Within EvoX, we have seamlessly integrated a range of
black-box optimization challenges into the Problem mod-
ule, all adhering to a unified interface. Among these, the
reinforcement learning tasks stand out as particularly in-
tricate. To assess the model performance of EvoX, we
present two distinct demonstrations: one leveraging the CPU-
centric Gym [59] platform, and the other utilizing the GPU-
accelerated Brax [58]] platform. In both cases, the Prob-
lem module proficiently manages the interaction between the
policy models and the reinforcement learning environments,
enabling the EC algorithm to singularly concentrate on refining
the policy model’s weights through neuroevolution, indepen-
dent of the specificities of the task at hand. For a compre-
hensive evaluation of EvoX’s capabilities, we benchmarked

1problem = Gym(

2 env_name=..., # Gym's environment name

3 policy=..., # your policy

4 num_workers=..., # number of CPU workers

5 env_per_worker=..., # environments per worker
6)

Listing 3: Configuration for setting up a Gym-based reinforce-
ment learning task in EvoX. Users simply need to specify
the environment, define the policy model, and adjust runtime
parameters to optimize CPU utilization.
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Fig. 10: Performance curve when tackling the Atari Pong task
with Gym. The EC algorithm is PGPE with a population size
of 256. The baseline performance, achieved by PPO2, was
directly taken from [66] as a reference.

an ES algorithm (PGPE [25])), in comparison with the widely
acknowledged baseline (PPO2 baseline [[65]]) as endorsed by
OpenAl [66].

1) Performance with Gym: Over the years, Gym has
emerged as an essential open-source platform for developing
and benchmarking reinforcement learning algorithms. It offers
a plethora of predefined environments, streamlining the test-
ing and comparison of various algorithms on a standardized
platform. In 2021, the development of Gym transitioned to
Gymnasium [67]], serving as a direct replacement.

As illustrated in Lst. [3] setting up a Gym-based problem
in EvoX is straightforward. Users simply specify a Gym-
supported environment and define the policy network’s for-
ward function. This function primarily accepts two inputs:
the network’s weight and the observational data from the
environment. The EC algorithm outputs a varied set of weights
for the policy network, which are then evaluated within the
specified Gym environment to aggregate rewards (i.e., fitness
values). Additionally, the runtime configuration can be tailored
to best align with users’ computational resources and needs.

Specifically, we instantiated an Atari Pong task with the
policy model being a CNN with 78,102 parameters. As shown
in Fig. the complexity of Atari Pong and the constraints
of the CPU-centric game emulator significantly affected the
speed of the workflow. Nonetheless, thanks to EvoX’s efficient
architecture, all available CPU cores were maximized, accom-
plishing the tasks in roughly 4 hours to reach the baseline
performance.

2) Performance with Brax: Brax is a differentiable physics
engine developed in JAX, which capitalizes on JAX’s capa-
bilities to harness GPUs for extensive parallel simulations.
Given that EvoX shares its foundation with JAX, it seamlessly



1 problem = Brax(

2 env_name=..., # Brax's environment name

3 policy=..., # user's policy model

4 batch_size=..., # concurrency of environments
5)

Listing 4: Configuration for setting up a Brax-based reinforce-
ment learning task in EvoX. Users simply need to specify
the environment, define the policy model, and determine the
batch_size for specifying the number of environments
running in concurrency.

Walker2D
3000
T MM\VA M\MMU\M
©
: W
g 2000
—— EC Algorithm
1500 —— Baseline
0 20 40 60 80
Time (s)
Fig. 11: Performance curve when tackling the Hopper task

with Brax. The EC algorithm employed is CMA-ES with a
population size of 4,096. The baseline performance, achieved
by PPO2, was directly taken from [66] as a reference.

integrates with Brax.

As illustrated in Lst. [3] setting up a Brax-centric problem
in EvoX is similar to the case with Gym, necessitating the
environment’s name and the forward function for the policy
network. A unique aspect of Brax is the batch_size
parameter, which indicates the number of concurrent environ-
ments on the hardware accelerator. This often aligns with the
population size of an EC algorithm to harness the prowess of
Brax by batch-evaluating the environments on GPU(s).

Specifically, we instantiated a Walker2D task with the policy
model being a 3-layer MLP with 1,830 parameters. As shown
in Fig. with GPU acceleration, the EC algorithm was
able to achieve the baseline performance within approximately
1 minute, underscoring the promising potential of EvoX in
tackling reinforcement learning tasks via neuroevolution.

C. Comparison with EvoTorch

To further benchmark the efficiency of EvoX, we juxtaposed
it against EvoTorch [17], a library built atop PyTorch. We
concentrated on evaluating two natively supported algorithms
by both EvoX and EvoTorch: PGPE and xNES.

As evidenced in Fig. [[2] EvoX exhibits promising per-
formance in comparison to EvoTorch. PGPE’s execution on
EvoX is generally faster across various configurations. In
the case of XxNES, EvoX also tends to be more efficient,
especially during population scaling tests. When the dimension
increased to 8,192, EvoTorch encountered an Out of Memory
error and thus failed to continue the test. A similar issue arose
when the xNES population size was increased to 1,048,576.
In contrast, EvoX managed to complete the benchmark on
the same hardware setup, indicating its efficiency in memory
management.
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Fig. 12: Comparative performance with EvoTorch using the
Sphere function for PGPE and xNES. Both axes are on a
logarithmic scale. For tests where the problem dimension is
scaled, the population size is fixed at 100, and vice versa.
Note: EvoTorch’s tests of xXNES were terminated due to an
Out of Memory error.

VIII. CONCLUSION

Throughout its history, EC has proven to be an effective
tool in addressing a wide array of problems across numerous
domains. However, the rise of large-scale data and complex
systems has posed significant scalability challenges for it. In
response, we have developed EvoX, a computing framework
specifically crafted for scalable EC. This framework, with its
tailored programming and computation models coupled with a
hierarchical state management system, facilitates the efficient
employment of distributed and heterogeneous computational
resources.

Designed with flexibility and extensibility in mind, EvoX
is committed to ongoing development towards various appli-
cation areas. Among the promising directions for future de-
velopment are evolutionary multitasking [68]] and evolutionary
transfer optimization [[69]]. These areas, characterized by com-
putationally intensive yet inherently parallelizable workloads,
can significantly benefit from GPU acceleration. Furthermore,
as advancements in computing architectures continue to re-
shape the technological landscape, EvoX is poised for ongoing
refinement. This will guarantee the sustained relevance of EC
within the rapidly changing domain of AL
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